Bi-Transferring Deep Neural Networks for Domain Adaptation

نویسندگان

  • Guangyou Zhou
  • Zhiwen Xie
  • Xiangji Huang
  • Tingting He
چکیده

Sentiment classification aims to automatically predict sentiment polarity (e.g., positive or negative) of user generated sentiment data (e.g., reviews, blogs). Due to the mismatch among different domains, a sentiment classifier trained in one domain may not work well when directly applied to other domains. Thus, domain adaptation for sentiment classification algorithms are highly desirable to reduce the domain discrepancy and manual labeling costs. To address the above challenge, we propose a novel domain adaptation method, called Bi-Transferring Deep Neural Networks (BTDNNs). The proposed BTDNNs attempts to transfer the source domain examples to the target domain, and also transfer the target domain examples to the source domain. The linear transformation of BTDNNs ensures the feasibility of transferring between domains, and the distribution consistency between the transferred domain and the desirable domain is constrained with a linear data reconstruction manner. As a result, the transferred source domain is supervised and follows similar distribution as the target domain. Therefore, any supervised method can be used on the transferred source domain to train a classifier for sentiment classification in a target domain. We conduct experiments on a benchmark composed of reviews of 4 types of Amazon products. Experimental results show that our proposed approach significantly outperforms the several baseline methods, and achieves an accuracy which is competitive with the state-of-the-art method for domain adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Recurrent Adversarial Deep Domain Adaptation

We study the problem of learning domain invariant representations for time series data while transferring the complex temporal latent dependencies between domains. Our model termed as Variational Recurrent Adversarial Deep Domain Adaptation (VRADA) is built atop a variational recurrent neural network (VRNN) and trains adversarially to capture complex temporal relationships that are domain-invar...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Deep CORAL: Correlation Alignment for Deep Domain Adaptation

Deep neural networks are able to learn powerful representations from large quantities of labeled input data, however they cannot always generalize well across changes in input distributions. Domain adaptation algorithms have been proposed to compensate for the degradation in performance due to domain shift. In this paper, we address the case when the target domain is unlabeled, requiring unsupe...

متن کامل

Progressive Ladder Networks for Semi-Supervised Transfer Learning

Semi-supervised learning has achieved remarkable success in the past few years at harnessing the power of unlabeled data and tackling domains where few labeled data examples exist. We test the hypothesis that deep semisupervised architectures learn general representations. We combine two well-known techniques for semi-supervised and transfer learning, ladder networks and progressive neural netw...

متن کامل

Learning Transferable Features with Deep Adaptation Networks

Recent studies reveal that a deep neural network can learn transferable features which generalize well to novel tasks for domain adaptation. However, as deep features eventually transition from general to specific along the network, the feature transferability drops significantly in higher layers with increasing domain discrepancy. Hence, it is critical to formally reduce the dataset bias and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016